UO > About > Organizational Structure > Faculties & Institutes > Faculty of Science > About > Organizational Structure > Departments & Centres > Department of Mathematics

David John Saunders

Basic information




Supervised theses


Academic degree, name, surname:M.A. David John Saunders, PhD.
Room, floor, building: A 120, Building A
Position:Visiting Professor
Research interests and teaching:
Department/ Faculty: Department of Mathematics (Faculty of Science)
Phone number, mobile: +420 553 46 2135
Personal website:

Selected publications:


  • SAUNDERS, D. J. The Geometry of Jet Bundles. Cambridge University Press, 1989. 304 pp. (London Mathematical Society Lecture Note series; Vol. 142.) ISBN 0-521-36948-7.

Edited books

  • KRUPKOVÁ, O. – SAUNDERS, D. J. (eds.) Variations, Geometry and Physics: Volume in Honour of D. Krupka's 65th Birthday. New York: Nova Science Publishers, 2008. 360 pp. ISBN 978-1-60456-920-9.
  • KRUPKA, D. – SAUNDERS, D. J. (eds) Handbook of Global Analysis. Amsterdam: Elsevier, 2008. 1244 pp. ISBN 978-0-444-52833-9.

Recent papers

  • SAUNDERS, D. J. Thirty years of the inverse problem in the calculus of variations and its applications. Reports on Mathematical Physics, 2010, Vol. 66, No. 1, pp. 43–53.
  • SAUNDERS, D. J. Horizontal forms on jet bundles. Balkan Journal of Geometry and Its Applications, 2010, Vol. 15, No. 1, pp. 149–154.
  • SAUNDERS, D. J. – CRAMPIN, M. The fundamental form of a homogeneous Lagrangian in two independent variables. Journal of Geometry and Physics, 2010, Vol. 60, No. 11, pp. 1681–1697.
  • KRUPKA, D. – KRUPKOVÁ, O. – SAUNDERS, D. J. The Cartan form and its generalizations in the calculus of variations. International Journal of Geometric Methods in Modern Physics, 2010, Vol. 7, No. 4 , pp. 631–654.
  • CRAMPIN, M. – SAUNDERS, D. J. Homotopy Operators for the Variational Bicomplex, Representations of the Euler-Lagrange Complex, and the Helmholtz-Sonin Conditions. Lobachevskii Journal of Mathematics, 2009, Vol. 30, No. 2, pp. 107–123.
  • CRAMPIN, M. – SAUNDERS, D. J. Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czechoslovak Mathematical Journal, 2009, Vol. 59, No. 3, pp. 741–758.
  • SAUNDERS, D. J. Homogeneous variational complexes and bicomplexes. Journal of Geometry and Physics, 2009, Vol. 59, No. 6, pp. 727–739.
  • SAUNDERS, D. J. Krupka's fundamental Lepage equivalent and the excess function of Wilkins. In KRUPKOVÁ, O. – SAUNDERS, D. J. (eds.) Variations, Geometry and Physics. New York: Nova Science Publishers, 2008, pp. 77–84. ISBN 978-1-60456-920-9.
  • SAUNDERS, D. J. The Cartan form, 20 years on. In KOWALSKI, O. et al. (eds.) Differential Geometry and its Applications: Proceedings of the 10th International Conference on Differential Geometry and its Applications 2007. Singapore: World Scientific, 2008, pp. 527–537. ISBN 978-981-279-060-6.
  • SAUNDERS, D. J. Jet manifolds and natural bundles. In KRUPKA, D. – SAUNDERS, D. J. (eds) Handbook of Global Analysis. Amsterdam: Elsevier, 2008, pp. 1035–1068. ISBN 978-0-444-52833-9.
  • SAUNDERS, D. J. How to recover a Lagrangian using the homogeneous variational bicomplex. In CANTRIJN, F. – CRAMPIN, M. – LANGEROCK, B. (eds.) Differential Geometric Methods in Mechanics and Field Theory. Gent: Academia Press, 2007, pp. 141–154. ISBN 978-90-382-1128-2.
  • CRAMPIN, M. – SAUNDERS, D. J. Fefferman-type metrics and the projective geometry of sprays in two dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 2007, Vol. 142, No. 3, pp. 509–523.
  • CRAMPIN, M. – SAUNDERS, D. J. Path geometries and almost Grassmann structures. In SABAU, S. V. – SHIMADA, H. (eds.) Finsler geometry, Sapporo 2005: In Memory of Makoto Matsumoto. Tokyo: Mathematical Society of Japan, 2007, pp. 225–261. ISBN 978-4-931469-42-6. (Advanced Studies in Pure Mathematics; Vol. 48.)
  • CRAMPIN, M. – SAUNDERS, D. J. Affine and projective transformations of Berwald connections. Differential Geometry and its Applications, 2007, Vol. 25, No. 3, pp.  235–250.
  • CRAMPIN, M. – SAUNDERS, D. J. Projective connections. Journal of Geometry and Physics, 2007, Vol. 57, No. 2, pp. 691–727.
  • CRAMPIN, M. – SAUNDERS, D. J. On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant. In CLEMENTE-GALLARDO, J. – MARTÍNEZ, E. (eds.) Monografías de la Real Academia de Ciencias de Zaragoza, No. 29: Groups, Geometry and Physics. Zaragoza, 2006, pp. 79–92.

(Data as of 11-Jul-2010)

No record found.

No record found.

Variations, geometry and physics
Main solverM.A. David John Saunders, PhD.
Period1/2014 - 12/2016
ProviderStandardní projekt GA ČR
social hub